
ATMEL tinyAVR

How to program
the “tiny” Atmel
microcontrollers

Guide on how to use the Atmel
microcontrollers of the tinyAVR family

with the Arduino IDE 1.5.8

Written by Leonardo Miliani

Version 1.5.8-2

Pg. 1

Guide index:

1. A little introduction to the MC Us
1. Attiny25/45/85
2. Attiny24/44/84
3. Attiny2313/4313
4. Not es

2. How to set up the Arduino IDE 1.5. 8

3. Wirings

4. P rogramming an ATtiny85
1. Example sketch: blinking of 3 LEDs

5. Serial communication
1. Example s ketch: data exchange between an Attiny and Arduino through

serial

6. U sing the I2C
1. Example s ketch: read and write from/to an EEPROM through I2C

7. Using the SPI

8. Error while compiling sketches bigger than 4.5 KB (Win/Mac)

9. C oncl usio ns and credits

10.L icen s es and warranties

Pg. 2

1. A little introduction to the MCUs

Apart the more famous ATmega328P used on the Arduino UNO boards, the ATmega2560 used on the
Arduino MEGA2560, the ATmega32U4 of the Arduino Leonardo/Micro/Esplora/Yun and some other
chips used in older or less known Arduino boards, Atmel also produces a series of 8-bits
microcontrollers with limited dimensions, the tinyAVR family (“tiny” because in fact they are tiny...),
sold in several packages, included the DIL package, mostly used in the hobbyist market. They are
ideal for using in those projects where the number of I/O lines is not fundamental, the space is a
primary requirement, low power devices are essential, without giving up the computational power of
the megaAVR chips: in fact, the tinyAVR MCUs can work up to 20 MHz (with external crystals). But
the chips can run at 1 MHz clock too and, in stand-by, achieve current consumptions of only 200 nA
(nanoAmpere).

There are a lot of different Tiny chips but only few of them can be programmed using the Arduino
IDE: to achieve this, the IDE needs a particular set of libraries that not only let the user to acces
their peripherals with the code but that also gives the IDE the instruments to be able to program
them. In the Arduino environment, such set of libraries is called “a core” and, for the Tiny MCUs, the
most known is the “Tiny Core”. Although it doesn't support a wide variety of different chips, it offers
a good compatibility with the IDE, that is you can use the typical Arduino functions like digitalWrite,
analogRead, pinMode, etc., with the MCUs the core supports. Currently, the Tiny Core supports the
following chips:

• Attiny25/45/85: very small microcontrollers (DIL8 package),
with max. 6 I/O lines (5 “normal” pins plus the reset pin that can
be activated like another I/O line)

◦ Flash: 2/4/8 KBs, respectively
◦ SRAM: 128/256/512 bytes, respectively
◦ EEPROM: 128/256/512 bytes, respectively
◦ Timers: 1x 8-bits timer, 1x 16-bits timer
◦ 4-channels, 10-bits ADC
◦ Clock: 1/8 MHz with internal oscillator, 16 Mhz with internal

PLL, up to 20 Mhz with external crystal
◦ Communication: SPI, USI
◦ Not supported by HW: USART, I2C

Pg. 3

Atmel ATtny85

Attiny25/45/85 pinout

• Attiny24/44/84: small/medium-size microcontrollers (DIL14
package), with a max. of 12 I/O lines (11 “normal” pins plus the
reset pin)

◦ Flash: 2/4/8 Kbs, respectively
◦ SRAM: 128/256/512 bytes, respectively
◦ EEPROM: 128/256/512 bytes, respectively
◦ Timers: 1x 8-bits timer, 1x 16-bits timer
◦ 8-channels, 10-bits ADC
◦ Clock: 1/8 Mhz with internal oscillator, up to 20 Mhz with external crystal
◦ Communication: SPI/USI
◦ Not available in HW: USART, I2C

• Attiny2313/4313: medium-size microcontrollers (DIL-20

package), with a max. of 18 I/O lines (17 “normal” pins plus 1 reset
pin)

◦ Flash: 2/4 kB, respectively
◦ SRAM: 128/256 bytes, respectively
◦ EEPROM: 128/256 bytes, respectively
◦ Timers: 1x 8-bits timer,1x 16-bits timer
◦ Clock: 1/8 Mhz with internal oscillator, up to 20 Mhz with external crystal
◦ Communication: USART, SPI
◦ Not available in HW: I2C, ADC

Pg. 4

Atmel ATtiny84

Atmel ATtiny2313

Attiny24/44/84 pinout

Attiny2313/4313 pinout

Note #1:
the Attiny 25/45/85 microcontrollers are identical each other and differ only for the size of their
memories. Same is for the Attiny24/44/84 and for the Attiny2313/4313.

Note #2:
this guide shows some wiring and programming examples with an Attiny85. The same informations
reported on this document are adaptable to the other microcontrollers cited above, too: some minor
changes have to be done to adapt the example and the code (i.e., the pins used and their
declaration in the code).

Note #3:
this guide has been written on a Mac with OS X 10.9, so the file paths, the terminal commands and
such things refer to this system, Where possible, I've tried to adapt them for Windows and Linux
systems too, like the commands to type on the terminal/command-line. If not present, the
modifications should be simple and easily to do by the user for the system in use.

Note #4:
this guide is specific for the 1.5.8 version of the Arduino IDE. If you intend to use an older version of
the 1.5.x branch, the versions of the IDE with a release number equal or lower then 1.5.7 are
supported by the previous release of this guide, while if you intend to use the 1.0 version of the IDE
you can use another guide of mines. Both are available for download from my personal website.

Pg. 5

http://www.leonardomiliani.com/

2. How to set up the Arduino IDE 1.5.8

As I said, the tinyAVR microcontrollers seen in the previous chapter are not natively supported by
the Arduino IDE 1.5.8 so we need to make some changes to the IDE so that you can write code and
program them through the Arduino environment. To do this, we need the “core” for such chips so
that we can use the Arduino functions with ease.

To install the core, we need to do the following steps:

1. close the IDE 1.5.8. It's important that you fetch the modifications when the Arduino
environment is not running.

2. Now navigate to the folder used to save your sketches: if you don't know where in your
computer this folder is, open the IDE then select “File/Preferences” from the menu: the first
line that you'll see in the window that will appear on the desktop contains the path of the
folders of your sketches (remember to close again the IDE before to copy the folder). Check
if a folder named /hardware is already present: if not, create it.

3. Now you need to install the Tiny Core*. For your convenience, I've put a copy of it inside the
package of the guide: you just need to copy the folder /tiny inside the folder you reached at
the previous step.
 *: at the time of writing this guide, the latest version of the Tiny core is the 0150-0020. This can change in the.

4. After this, check that inside the folder /tiny/avr you have the following files:

1. boards.txt: this contains the definitions for the new microcontrollers. You'll find this file
only if you have used the attached core, otherwise you should find a file named
Prospective boards.txt, that contains all the variants of the chip that are supported by
the core. You have to edit it according to your need and save it with the name
boards.txt. Be careful: the attached file has been edited in a manner that will present
you the MCUs grouped by family: in the rest of the guide I'll use this kind of sort. If you
create your own file, keep in mind that you'll find some differences in the menus;

2. platform.txt: this contains informations used by the IDE to upload the sketchs and to
program the microcontrollers' fuses;

3. folders /bootloaders and /cores: they contain the files to program the chips;

4. other minor files (“README”, “Prospective Boards.txt” [see above] and “license.txt”).

5. Since the current version of the guide, I've removed the file avrdude.conf that was present
in the previous releases: that file contains some infos for the tool named avrdude that is used
to write the datas on the chips. The last version of the tool (6.0.1) that comes with the IDE
1.5.8 doesn't need that substitution anymore (this is valid if you aren't a different version of
the toolchain (i.e., CrossPack).

6. Now copy the folder /ATtiny inside your sketchbooks' folder (see #2).

7. Still inside the sketchbooks' folder, check if you have a folder named /libraries. If don't,
please create it (it is necessary to contain the third-party libraries that you add to the
Arduino environment), then copy inside it the contents of the folder named /libraries (it
contains the additional libraries needed to manage the serial communication, the I2C, the SPI
etc..).

Pg. 6

http://code.google.com/p/arduino-tiny/downloads/detail?name=arduino-tiny-0100-0017.zip

OK, now open again the Arduino IDE. If you correctly found all of the previous steps you should see
under the “Tools/Board” four new entries (in the pictures below the names are in Italian, my native
language):

Now, select a line of your choise, i.e. “Attiny x4”, then open again the menu “Tools”: you'll see a
new entry, “Micro”, from where you can choose the MCU of the family previously selected:

Now check if the example sketchs are available too. Choose the entry “File/Sketchbook”: you should
find a nee sub-menu named “Attiny” with other entries inside, like in the following picture:

Pg. 7

3. Wirings

To be able to program a microcontroller from the Attiny family we need to use the ISP (In-System
Programming) communication because these chips don't reverse a memory area to store a
bootloader like the ATmega328P of the Arduino UNO board nor they have the hardware support for
the serial communication. The ISP programming uses the SPI (Serial Peripheral Interface) peripheral
that is integrated inside these microcontrollers (it's also present in the ATmega328P). Two devices
can exchange data over SPI using only 3 lines, MOSI, MISO, and SCK, that must be connected by
wiring the SPI pins of the programmer device to the SPI pins of the programmed device. As a
programmer we'll use a common Arduino UNO board thanks to the sketch ArduinoISP that is incuded
into the Arduino IDE:

1. connect your Arduino board to the computer;
2. open the Arduino IDE;
3. choose the “ArduinoISP” sketch from “File/Examples”;
4. select the board “Arduino UNO” from “Tools/Board” and then, from “Tools/Port” the logic port

the board is connected to. This changes from system to system: under Windows it will be
something like COM10; under Linux it will be like /dev/ttyACM0; under Mac OS X it will be
like /dev/tty.usbmodem14211;

5. click on the upload icon or chose “File/Upload” to write the sketch on the Arduino UNO board;
6. at the end of the operation, disconnect the board from your computer.

Now your Arduino contains the software that can emulates an STK500 programmer, so that you'll be
able to use it to write the sketches on the Attiny you'll use.

Note:
if you're using a board model older than the UNO R3 you could experience the so-called autoreset
problem, it means that the Arduino will reset itself when you'll try to upload the sketch to the Attiny.
This problem comes from the bootloader that is installed on your board: the Arduino UNO R1 and
part of the first UNO R2 had the Optioot 4.0 that was affected by this while the last UNO R2 and the
UNO R3 use the Optiboot 4.4 that solved the issue. The ultimate solution is to write the newer
bootloader (inlcuded into the IDE 1.5) on the board, but for this operation you need another Arduino
board to use like a programmer or a third-party programmer (like USBtinyISP or other). A
temporary solution is to use a polarized capacitor of 10uF that you have to insert into the pins RST
(cathode of the capacitor) and 5V (anode of the capacitor), to be used only when you upload the
sketch to the Attiny microcontroller and to remove immediately after that (it avoids the reset of the
Arduino board so that you cannot program it).

Now get a breadboard and some jumpers to do the wirings. Replicate the wirings of the picture
below (use the colors of the jumpers to help yourself doing the wirings).

Note:
every microcontroller has its own MOSI/MISO/SCK lines put on different pins. Check the datasheet
of the chip you're using and change the connections as need (the MOSI/MISO/SCK pins are showed
in the microcontroller pinout that's usually in one of the first pages of the datasheet).

Pg. 8

Connection Arduino UNO Attiny85

VCC Pin 5V Pin 8

GND Pin GND Pin 4

MOSI Pin 11 Pin 5

MISO Pin 12 Pin 6

SCK Pin 13 Pin 7

RESET Pin 10 Pin 1

The first operation to be done is always the setting of the microcontroller's fuses to set the desired
clock frequency. Every chip has several clocks to choose from: the Tiny core offers the 1 and 8 MHz
clock speed because this frequencies are available with the internal oscillator of the chips, so that
you don't need to use external crystals that should use 2 of the few pins offered by these chips.
Moreover, these chips are many times used in battery-powered projects, where lower frequencies
can permit to use lower supply voltages, for better power saving.

To select the clock source we just have to “write the bootloader on the microcontroller”: I used the
quotation marks because, as we said before, the Attiny microcontrollers don't reserve an area into
the Flash memory to store a bootloader. This operatin is only executed to modify the fuses directly
from the IDE by using an empty bootloader that serves to befool the Arduino IDE. Here is an
example: let's set an Attiny85 to work at 8MHz.

1. Make the wirings as shown in the picture above;
2. connect the Arduino to the computer (remeber? We already had uploaded the ArduinoISP

sketch);
3. open the IDE 1.5.8, then select “Attiny x5” from “Tools/Board”;
4. select “Attiny85@8 Mhz (internal oscillator; BOD disabled)” from “Tools/Micro”;
5. select “Arduino as ISP” from “Tools/Programmer”: make attention, don't select “ArduinoISP”,

that refers to a new Arduino programming board, released recently;
6. select “Write bootloader” from “Tools”.

Now the IDE will upload the empty bootloader on the Attiny85, and during this operation set up the
fuses too. This operation also completely erases the microcontroller's memory: if you want to do a
full clean of the Flash, do the upload of the bootloader (remember that avrdude, the software used
to upload the sketches, only overwrites the Flash used by your program, leaving unchanged the rest
of the memory).

Pg. 9

4. Programming an ATtiny85

Now we're ready to use the tinyAVR microcontrollers for our projects within the Arduino IDE, that
we'll use to write the code and to send the sketch with few clicks.

Let's start with a little project, a circuit with 3 LEDs whose flashing schematics can be changed by
pressing a switch, with an Attiny85 to control the whole system. The sketch that we're using can be
found in “File/Sketchbook/Attiny/esempi/test_3_led”.

Check if in “Tools/Micro” you selected the entry “Attiny85 @ 8 Mhz” (if doesn't, select it again), then
press the icon “Upload” (or select the corresponding entry from the “File” menu).

Now unplug the Arduino, then unplug the ISP programming jumpers and finally make the following
circuit:

You'll need:
• 1x tactile switch for surface mounting;
• 3x resistors for the LEDs (I've used the value of 680 ohm);
• 1x 10Kohm resistor ;
• 3x LEDs, maybe of 3 different colors, e.g.: red, yellow, green.

Connect the 3 LEDs as follow:
• red LED: anode to pin #7 of the ATtiny85, cathode to GND with one of the 680 Ohm

resistors;
• yellow LED: anode to pin #6 of the ATtiny85, cathode to GND with one of the 680 Ohm

resistors;
• green LED: anode to pin #5 of the ATtiny85, cathode to GND with one of the 680 Ohm

resistors;

Pg. 10

Test circuit with an Attiny85

The tactile switch must be connected as shown in the picture above, with the 10K pull-down resistor
that goes to GND on the same line that is connected to pin #3 of the Attiny85, while one of the pins
of the other side must be connected to +5V. Now plug again the Ardiuno to your computer, so that
you can power the circuit through the USB port.

What are you seeing?
The first LED, the red one, blinks.

What can we do?
By pressing the switch, the yellow LED start blinking. Another press and the green LED start
blinking. One more press and all the 3 LEDs blink sequentially. With the last 2 presses we can
choose to have all the LEDs steady on or off.

How does the code work?
The code reads the switch pressings and change the value of a variable that selects the flashing
scheme. Instead of delay(), millis() has been used to calculate the timings of the flashing schemes
because the first function would stop the code execution so that the program wouldn't be able to
read the pressings of the switch while flashing a LED.

Pg. 11

5. Serial communication

After this first example, that we have used it to learn how to wire and program the Attiny85 through
the Arduino board, let's examin another situation, how to use the serial communication. For this task
will use again an Attiny85 because this microcontroller, like his little brothers Attiny25/45 but also
the Attiny24/44/84, don't support the hardware USART (serial peripheral): the only microcontrollers
of the Attiny family that have the integrated hardware serial are the Attiny2313/4313. To use the
serial, we must implement it in software.

To do so we'll use the SoftwareSerial library, that is distribuited with the Arduino IDE, that make
this: it emulates through software the hardware serial peripheral. There's a problem: the library has
been written to work with microcontrollers that has more than one 16-bits timer, so we must modify
it otherwise the compiler will return an error. Another problem of the library is that it doesn't support
the Attiny microcontrollers in RX (receiving data) so we need to correct this aspect too.

Note:
the SoftwareSerial only works with microcontrollers with a clock of 8MHz and it doesn't support
speeds of 1MHz.

Now, let's wiring again our Attiny85 for the ISP
programming and upload the sketch called
test_serial.ino (y o u ' l l f i n d i t i n
“File/Sketchbook/Attiny/esempi”).

Then we have to set up the circuit shown on the
right. We need 2 switches and 2 10K resistors.

Wiring:
• connect the switches to pin #2 and #3 of

the Attiny85, each of them with its pull-
down resistor connected to GND;

• connect the pin #5 of the Attiny85 to the
pin #D1 of the Arduino (it's the pin
marked as “TX”) and the pin #6 of the
Attiny85 to pin #D0 od the Arduino
(“RX”);

• connect +5V and GND as in the picture.

The SoftwareSerial library can work using any
pin of the microcontroller: we have decided to
use a couple of pin from the side that is closer
to the Arduino but we can choose any other pin.
The switches will be used to send data to the
Arduino.

Pg. 12

Circuit to test the serial communication

Select the sketch “File/Sketchbook/Attiny/esempi/test_seriale_tiny”: it just sends through the TX
line a different caracter for each of the buttons. Let's upload it using the method shown in the
previous chapter. Now, unplug the Arduino and then remove the ISP wirings. Now upload to the
Arduino board the sketch “File/Sketchbook/Attiny/esempi/test_serial_arduino”: it waits for data
incoming via the software RX line and ping back any caracter to the hardware serial TX of the board.
To do this, select the “Arduino UNO” board from “Tools/Board” and then upload the sketch.

Again, unplug the Arduino, make the wirings shown in the picture above and plug the Arduino
another time. Now, open the IDE and then open the serial monitor (or another terminal if you don't
want to use the console of Arduino): now, press the buttons on the breadboard. If everything is
connected correctly, we'll see different characters (“1” or “2”) when we press the switches.

Pg. 13

6. Using the I2C

The I2C (or I2C) is a bus developed by Philips (now NXP) used to let two or more deviced to
communicate between each other just by using only 2 wires. Every device is identified on the bus
with a number, or ID, that uniquely addresses every device. Each device can work as a “master”
(who send data requests) and as a “slave” (who sends the required data). Unfortunately, the
Attiny25/45/85 microcontrollers don't have any hardware support for the I2C bus but instead they
have a peripheral called USI (Universal Serial Interface) that can emulate the I2C through the 2-
Wire (or TWI) protocol, very close to the I2C.

Thanks to the community of Arduino enthusistats, we can use a modified version of the Wire library
that is compatible with the Attiny microcontrollers, the TinyWire library. Again, we have to modify
the library because the standard TinyWire only works at clock speeds of 1MHz so it wouldn't work
with our 8MHz chips. Morevoer, the original version of the library doesn't support the Attiny84 so we
had to do another mod.

The TinyWireM and TinyWireS libraries included in the folder /libraries that you installed at the
beginning of this guide have already been modified and can be used respectively when you set a
device as a “master” (the former) or a “slave” (the latter).

Note:
by default, the RX and TX buffers of the TinyWireM and TinyWireS libraries are set respectively to 16
and 32 bytes. Keep in mind these values because they use this amount of memory space, and the
Tiny microcontrollers don't have big quantities of RAM: if you would experience RAM overflows, you
could need to change those buffers. If you want to do this, open and edit the following files:

• TinyWireM: file TinyWireM.h
◦ change the value in this line:

#define USI_BUF_SIZE 16 // bytes in message buffer

• TinyWireS: file usiTwiSlave.h
◦ change the values in these lines:
◦ #define TWI_RX_BUFFER_SIZE (32)

◦ #define TWI_TX_BUFFER_SIZE (32)

To test the I2C communication we'll use an EEPROM memory chip (We've used a 24LC512 but you
can use a 24LC256 or a 24LC128 too). Let's look for the following components: 2 LEDs with their
resistors (in the example we used a couple of 680 ohm resistors) and 2 1.5Kohm resistors. Wirings:

• Attiny:
◦ pin #8 to +5V
◦ pin #4 to GND

• 24LC512:
◦ pins #1, #2, #3, #4, and #7 to GND
◦ pin #8 to +5V

Pg. 14

https://github.com/qistoph/TinyWire

• LED1:
◦ anode to pin #6 of the Attiny, with the 680 ohm resistor in series
◦ cathode to GND

• LED2:
◦ anode to pin #3 of the Attiny, with the 680 ohm resistor in series
◦ cathode to GND

• Bus I2C:
◦ connect the pin #5 of the ATtiny to pin #5 of 24LC512 and then to +5V with the 1.5Kohm

pull-up resistor
◦ connect the pin #7 of the ATtiny to pin #6 of 24LC512 and then to +5V with the 1.5Kohm

pull-up resistor

Here is the schematic:

Now we need to upload the sketch called Attiny/test_i2c on the Attiny by using the Arduino as an
ISP programmer (see the previous chapters) and the look at how the LEDs flash.

When the sketch will start, the Attiny will light up both the LEDs for a short time to inform the user
that the program is running. Then, the sketch will write into the first 10 bytes of the EEPROM
memory some test values. After this, the LEDs will be light off and then only the second LED will
light up again, to inform the user that the reading has been started. Now the first LED will blink only
if a “1” will be read from the EEPROM memory, and will stay off if a “0” is read. After the 10 bytes,
the cycle will start again.

Pg. 15

7. Using the SPI

The microcontrollers of the Attiny family don't have a real SPI peripheral, instead the USI peripheral
(seen in the previous chapter) is used to manage the Three-Wire connections, that are compatible
with the SPI. The USI peripheral has to be set up via software but, luckily, there's a library
developed to use the SPI communication on Attiny microcontrollers: it's name is tinyISP, originally
written by Jack Christensen. I modified it by adding the support fo the Attiny2313/4313 MCUs. For
your convenience, the library is included in this package, inside the /libraries folder.

At the moment, the library permits SPI communications only with MCU as a master. Moreover, it
doesn't support any SS (Slave Select) pin so, if it's required from the application, then the
programmer has to provide the proper functionalities via software.

The library can achieve a discrete transfer speed: the author claims that it's about 15 times faster
than shiftOut speeds and, with a clock that usually it's about 1/10 of the system clock (if the MCU
runs at 1MHz, the tinyISP sends datas at ~100Khz). The show the usage of tinyISP, the author
provides a couple of examples, available in the IDE from “Examples/tinySPI-master”. Due to
memory requirements, if you use the library with Attiny MCUs with less than 4KB of Flash you won't
have a lot of space for your code.

Pg. 16

https://github.com/JChristensen/tinySPI

8. Error while compiling sketches bigger than
~4.5 KB (Windows/Mac OS X)

The Atmel toolchain, that is the group of tools released by Atmel to program its microcontrollers,
that is included into the Windows and Mac OS X of the Arduino IDE has a linker (the program that
“links” the third-party libraries to the main code) has a bug so that it's impossible to compile
sketches for Attiny microcontrollers bigger than ~4.5 KB. To solve this issue, we need to replace the
linker of the IDE with the linker that comes with this guide. The change is necessary only if you don't
have updated by yourself the Atmel toolchain.

Linux users don't need to do any replacement, because their linker isn't affected by this bug.

1. Windows

1. enter into the folder /hardware/tools/avr/avr/bin that is included into your Arduino
installation and rename the file ld.exe to ld.exe.old, to have a backup copy of it;

2. now open the folder /linker/windows of this guide;

3. copy the file ld.exe (it comes from an updated toolchain available with WinAVR
20090313) inside the folder of 1).

2. Mac OS X

1. open the Finder and click on “Applications” from the side menu. Now click on the “Arduino
1.5” application and then select “Show the contents”. Navigate through
/Contents/Resources/Java/hardware/tools/avr/avr/bin/ and rename the file ld to
ld.old to have a backup copy of it;

2. now open another window of Finder and go to the folder /linker/macosx of this guide;

3. copy the file ld (it comes from CrossPack 20090319) inside the folder of 1).

Restart the IDE and check that the compilation doesn't return any error when compiling big
sketches.

Pg. 17

9. Conclusions and credits

The microcontrollers of the Attiny family are good chips with interesting features: they offer a very
good computing power (they can work up to 20 Mhz, like the bigger Atmega micrcocontrollers) in
small packages. The usage of the 8MHz internal oscillator allows to save 2 external I/O lines: this is
very interesting because the Attiny microcontrollers don't offer a huge number of pins.

In my humble opion, these chips aren't widespread: though, they have interesting features. Another
negative point is that, apart from Atmel Studio, they don't have much support from tools and IDEs.
This is solved in part thanks to the core and libraries developed by the community, even if they lacks
in documentation, so that the users have to find the issues and solve by themselves, like in the
cases of SoftwareSerial and I2C shown above, sometimes with a lot of attempts and a bit of luck.

We would like to thank:

• the user PaoloP of the Arduino forum that has given a consistent contribution by modifiyng
several configuration files to let the IDE be able to incorporate the core Tiny with the older
version 1.5.4, work reused for the following releases of this guide;

• the user Coding Badly of the Arduino forum for his core Tiny;
• BroHogan for his library TinyWire;
• Jack Christenses for his library tinyISP;
• the Arduino staff for this beautiful project.

Pg. 18

10. Licenses and warranties

This document is released under the Creative Commons Licence Attibution-Share Alike-Non
Commercial 4.0 International licence. This means that you are free to:

• copy and redistribute the material in any medium or format
• remix, transform, and build upon the material

Under the following terms:
• Attribution – You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• Non commercial – You may not use tje material for commercial purposes.
• Share alike – If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as this guide.

Note:
every time you use or redistribuite this guide, you must do it under the terms of this license, that
you have to explicitely and clearly indicate. A copy of the license is available from here:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Note #2:
the example codes written by the author are redistribuited under the terms of the Creative
Commons license cited above, while the third-party files included as attachments in this guide (like
the core Tiny and the software libraries) are redistribuited under the terms of the licenses of their
respective authors.

Note #3:
all the material is release “as is”: no warranties are given for direct or indirects troubles, damages
and/or data loss that could happen by using of any information included in this document or using
any matherial included in this guide or the attached files. Any issue will fall down to the final user of
the guide and the matherial.

Written by Leonardo Miliani

Version 1.0 – Revison date: 2011/04/10

Version 1.2 – Revison date: 2012/02/17

Version 1.5-04 – Revison date: 2013/11/11

Version 1.5.7 – Revison date: 2014/07/14

Version 1.5.8 – Revison date: 2014/10/13

Versione 1.5.8-2 – Revision date: 2014/11/28

Pg. 19

http://www.leonardomiliani.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

